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I. Introduction 

The previous paper [l] in this series dealt with finite element 

approximations based on the Kelvin Principle. 

dual in a suitable sense to the classical Dirichlet Principle, and in many 

respects the computational properties of these principles are complementary. 

For example, when the classical Dirichlet Principle is used for Poisson's 

equation A@ = f, one directly approximates the scalar valued function @ 

with say linear finite elements. The resulting approximation @h satisfies 

The latter was shown to be 

* 

while there is a less accurate approximation to the gradient, i.e., 

( 2 )  1 1  '@-'@hIl 5 C h  1 1  '@I/ ' 
0 1 

Conversely, if the Kelvin 

Property [l] is satisfied 

(3) 

while 

( 4 )  

Principle is used and if our Grid Decomposition 

then the approximation u+ to - u = V@ satisfies 

As we shall show in this paper the least squares approach is in essence 

a mixture of the Dirichlet and Kelvin Principles. It is natural to use the 

same spaces for both $I and in least squares, and if say linear elements 

are used, then least squares inherits the property from the Dirichlet Principle 

~~ * 
Throu hout this paper Hr(Q) denotes the r-th order Sobolev space with 
norm 1 11, (see [ 2 1 ) .  



that the error in the scalar @ satisfies (1). On the other hand, least 

squares inherits from the Kelvin Principle the property that ( 3 )  holds 

if the Grid Decomposition Property is valid. 

Least squares methods appear to be particularly applicable for in- 

definite problems such as the Helmholtz equation 

A$ + u2@ = f 

arising in acoustics and elsewhere [ 3 ] ,  [ 4 ] .  This is especially true 

since least squares techniques lead to algebraic problems with sparse 

positive definite matrices. 

the other hand, typically give indefinite matrix problems. 

The Kelvin and Dirichlet Principles, on 

11. Formulation of Problem 

To fix ideas we consider the following boundary value problem: given 

a function f, we seek a suitably smooth @o satisfying 

+ q4)o = f in Q (1) 

( 3 )  

on rD 

or what is the same 

( 4 )  

(5) 

( 6 )  

div(u ) + q@ = f in R 
-0 0 

wo - = O  in R 

Q0 = 0 on rD, so u =  0 on 

-2- 

~~ ~~ ~ 

I 
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Here, R is  a bounded open region of  !Itn w i t h  boundary rD u rN and 

- v i s  t h e  outward d i r e c t e d  normal t o  t h e  boundary. To b e  p r e c i s e  w e  assume 

and w e  seek  s o l u t i o n s  @o, u+, t o  ( 4 ) - ( 6 )  i n  

and 

The s t a n d a r d  least  squares  method f o r  ( 4 ) - ( 6 )  i n t r o d u c e s  f i n i t e  

dimensional  subspaces 

6 lo= h lo and S o C  So 

and minimizes t h e  r e s i d u a l  i n  the fo l lowing  sense :  

Least Squares  V a r i a t i o n a l  P r i n c i p l e  

Find a @ &  E S: and a %l E $ which minimizes 

6 6  h h  
over $ E So and E vow 

Taking t h e  f i r s t  v a r i a t i o n  g i v e s  

h h  6 6  
a r e l a t i o n  which h o l d s  f o r  a l l  1 € Y O  and a l l  $J E So. A f a c t  t h a t  

w i l l  be  needed i n  t h e  n e x t  s e c t i o n  i s  t h a t  ( 8 )  remains v a l i d  when 

r e p i a c e d  w i t h  Q0 and sh replaced wi th  go; i.e., 

$6 i s  

- 3- 



We shall assume throughout the standard [ 51-[ 61 approximation pro- 

in terms of the Sobolev h 6  vo, So perties for the f in i te  dimensional spaces 

norms 11 / I r  on Hr(Q>. In particular, we shall need the following: 

t Approximation property 

There are integers k F 1 and R 1, parameters 0 < h < h 0 and 0 < 6 < 6o d 

and finite dimensional spaces 

h O<h<ho 6 , 1 0<5<S0 

k for which the following holds: for all g E H (Q> fl vo and Q, E Son H ' ( n )  

there are $ and $6 E S t  such that 

(10) 

for t = 0 and t = 1 where CA is a constant independent of h, 6, 2 and 

+. 
The remaining assumption used in the theory is the Grid Decomposition 

A Property alluded to in the introduction and discussed in detail in [l]. 

precise statement of this property is as follows: 

G r i d  Decomposition Property 

such that h 
For each -h v E -0 V there exists xh and ?+., in -VO 

v =w++h -h 

with div z = 0 and -h 



and such t h a t  

h 
f o r  some p o s i t i v e  c o n s t a n t  CG independent of h and . 

I n  t h e  next  s e c t i o n ,  i t  w i l l  be  proved t h a t  t h e  L2 e r r o r  

i n  t h e  l eas t  squares  approximation i s  t h e  b e s t  p o s s i b l e .  This  r e s u l t  

g e n e r a l i z e s  t h e  work of Jesperson [ 7 ]  who proved i t  f o r  Laplace’s  equat ion .  

Jesperson  w a s  unable  t o  o b t a i n  optimal estimates for 

and as w e  s h a l l  show i n  t h e  t h i r d  paper  i n  t h i s  series through numerical  

experiments  t h e r e  is, i n  genera l ,  a l o s s  of accuracy.  However, w i t h  t h e  

Gr id  Decomposition Proper ty  we a r e  a l s o  a b l e  t o  o b t a i n  opt imal  rates f o r  

( 1 3 ) .  

111. Error Analys is  

The s t a r t i n g  p o i n t  f o r  a n  a n a l y s i s  of least  s q u a r e s  methods is  t y p i c a l -  

l y  t h e  o b s e r v a t i o n  t h a t  t h e  s o l u t i o n  

a b e s t  approximation t o  {@o,!o} i n  a s u i t a b l e  norm. I n  our  contex t  t h i s  

norm arises from t h e  b i l i n e a r  form 

{+d,lh} of t h e  d i s c r e t e  problem is  



and is given by 

Letting 

[ ( 8 )  and (9), section 21 implies the error {&,e) is orthogonal to 

So X $ 

&,e - denote the errors [ ( U )  and (13) ,  section 21 we observe that 

- 
6 in the form B ( * , * ) ;  i.e., 

It follows that (+h,gh) is a best approximation to (909%) in I I I * l I I ~  
That is, we have the following result 

6 h  6 h  Lema 1. For all ($ ,I ) E So x 

Observe that ( 4 ;  and the approximation property in section 2 can be 

combined to give an error estimate in the norm 1 1 1  1 1 1 .  Indeed, it 

follows immediately from (1) and the fact that q is a bounded function 

that B ( * , * )  is a bounded form on H (0,) X - H (a), and without a loss of 

generality we may assume 

1 1 

(5) 

Thus 

and so 

-6- 



This error estimate is not very important by itself since the reverse 

of ( 6 )  is not valid, i.e., 1 1 1 . 1 1 1  is majorized by the norm 1 1  ]I1 on 
1 H ( 5 2 )  but is not equivalent to it. In fact, it is by no means clear that 

(2) even dominates the L2 norm 11 / l o .  
To obtain error estimates in more reasonable norms, we shall need to 

exploit the solvability of the boundary value problem [(1)-(3), section 21. 

More precisely, we shall need an a priori inequality of the form 

II II 2+t t = 0,l 

to hold for all $J E H2+t(Q) satisfying the boundary conditions 

$J = 0 on ro , v $ J - ~ = o  on rN 

(i.e., 

CE provided Sl and q are sufficiently smooth [2]. 

($,VI)) E So x V ).This will be the case for a fixed positive number -0 

This regularity property will enable us to establish optimal error 

estimates for 

To obtain an estimate for 

we shall need the Grid Deconposition Property discussed in section 2. 

-7- 



w e  s o l v e  

o r  what i s  the  same, 

R e g u l a r i t y  gives 

(14) 



Observe since p - YE = 0, - 

. .  

Use of the orthogonality property ( 3 )  and (6) leads to 

and in 
h 

This inequality is valid for any 

particular we choose the latter so that 

E S6 and ph E: bJoy 
0 

Our estimate (10) now follows by taking the sup in (15) with 11 rl / I 1  1. 

Lemma 3. In the same context as Lemma 2 we have 

(16)  II E Ilo( c A c E ~  I l l  ( & y e )  Ill + cE(/I 411 +I) I1 div(e)+qEll 
La -1 

-9- 



Proof .  We s o l v e  t h e  boundary v a l u e  problem 

But observe t h a t  

I n t e g r a t i n g  by p a r t s  once more w e  have 

/ g*Vn = 
R r R 

e - y  - / d i v ( 5 ) n  = 

-10- 

> 

+ ( d i v ( = ) + q E ) q q )  

I n t e g r a t i n g  by p a r t s  once more w e  have 

-10- 

f o r  q. Regular i ty  g i v e s  

(18) I I  Q I 1  2 2 CE 11 E II 0 * 

I n  a d d i t i o n ,  

( 1 9 )  

I n t e g r a t i n g  by p a r t s  w e  have 

which because of t h e  boundary c o n d i t i o n s  reduces  (19) to 

1 1  E 11; = J R c - v E ' v T l  + q E n )  . 

f 



which wi th  t h e  o r t h o g o n a l i t y  property ( 3 )  becomes 

2 (20) 11 E I Io = 1 ( q + l ) ( d i v e +  qE)n - B((E,E),(Q-<~,~)) . 
R 

6 
The f u n c t i o n  :, E S o  can be  chosen so  t h a t  

S ince  

t h e  estimate (16)  .follows from (20 ) .  

Theorem 1. There is a constant  C depending only  on CA,CE, and 

such t h a t  La 

(21) II E I l0  C(h+6)III(EYe)III 

and 

(22) 

Y 

-11- 



I n  p a r t i c u l a r  

w i t h  a similar bound f o r  1 1  d i v ( g )  . 

(23) 

where 

Proof. 

i n e q u a l i t y  (22)  fo l lows  from (10) and 

The i n e q u a l i t y  (21) i s  a d i r e c t  consequence of (10) and (16) .  The 

w i t h  t h e  observa t ion  t h a t  

We now t u r n  t o  t h e  L2 estimate for 2. The key i s  t h e  Grid Decomposition 

P r o p e r t y  and w e  u s e  t h i s  t o  write 

u - l h = w + + z  h 

-h - h '  

Recall tha t  f o r  any 1 E_Vo 

II d i v  v 11-1 I II XI10 * 

-12- 



Thus 

To complete the estimate we must get a similar bound on 

we turn to the identity ( 3 ) ,  which can be rewritten with $ = 0 as 

z+. 
& 

To do this 

h Putting 1 = z+ and noting that div(z+) = 0, this becomes 

IQ 3.s = In 2.Z.h 

Thus as z+ and w. are orthogonal 
--? 

= (2 -G ) 2 = I (u-u ) * z  In-%*% R h - h  -h R - - h  -h 

It follows that 

(26)  II 2hll 5 II 2-ihll . * 
0 0 

Combining (23), (25),  and ( 2 6 )  we obtain the following theorem. 

Theorem 2 .  If the Grid Decomposition Property h o l d s ,  then 

II e I10 i 2 I l l -&  II + C s ( 1 1  div 211 + 1 1  div(u-Gh)l[ ) . 
0 -1 -2 

-13- 



Thus 

Note'(27) implies that the error will be of order O(hk) if k = R 

and 6 = O(h). That is, the same order polynomials should be used f o r  

both $ and 3, and the associated mesh spacing should be comparable. In 

practice this can be done by taking the same grids f o r  both. 

c 

I 

-14- 
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